\(\frac{4}{\sqrt{5}-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

\(\frac{4}{\sqrt{5}-1}=\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{4\left(\sqrt{5}+1\right)}{4}=\sqrt{5}+1\)

22 tháng 7 2017

a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\) 

                                                                         \(=\frac{10}{1}=10\)

mấy câu còn lại bạn tự làm nốt nhé mk ban rồi 

22 tháng 7 2017

Câu bạn trả lời ở đâu v 

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

13 tháng 10 2019

\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)

13 tháng 10 2019

\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)

\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)

\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)

\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)

\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)

\(=2\sqrt{3}\)

20 tháng 3 2020

\( \begin{align} & 1)\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+1}=\dfrac{\sqrt{5}+1}{{{\left( \sqrt{5} \right)}^{2}}-1}-\dfrac{\sqrt{5}-1}{{{\left( \sqrt{5} \right)}^{2}}-1}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}=\dfrac{1}{2} \\ & 2)\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}=\sqrt{5}+2+\sqrt{5}-2=2\sqrt{5} \\ & 3)\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\sqrt{2}\left( \sqrt{2}+1 \right)}{1+\sqrt{2}}=\sqrt{2} \\ & 4)\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}=-4-3\sqrt{2}+4-3\sqrt{2}=-6\sqrt{2} \\ \end{align} \)

21 tháng 3 2020

Bạn ơi giải thích rõ hơn được không??

a) Ta có: \(A=\frac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\sqrt{7}\cdot\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\sqrt{3}+\sqrt{5}\)

b) Ta có: \(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}\)

\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{4}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\frac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+2-\sqrt{3}+\sqrt{5}-2+\sqrt{6}-\sqrt{5}\)

\(=-1+\sqrt{6}\)

20 tháng 10 2016

c. \(\frac{2}{\sqrt{5}+\sqrt{3}}-\frac{3-\sqrt{15}}{\sqrt{5}-\sqrt{3}}\)

= \(\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\left(3-\sqrt{15}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)

= \(\frac{2\sqrt{5}-2\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{3\sqrt{5}+3\sqrt{3}-5\sqrt{3}+3\sqrt{5}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

= \(\frac{2\sqrt{5}-2\sqrt{3}-3\sqrt{5}+3\sqrt{3}-5\sqrt{3}+3\sqrt{5}}{5-3}\)

= \(\frac{2\sqrt{5}-2\sqrt{3}-2\sqrt{3}}{2}\)

= \(\frac{2\sqrt{5}-4\sqrt{3}}{2}\)

mk chỉ bik cách lm như z thoy còn kết quả thì mk chưa chắc đã đúng đâu nên pn xem lại nhá

19 tháng 10 2016

\(\frac{1}{\sqrt{5}-1}+\frac{1}{1+\sqrt{5}}\)

= \(\frac{1}{\sqrt{5}-1}-\frac{1}{\sqrt{5}+1}\)

= \(\frac{\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

= \(\frac{\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\frac{\sqrt{5}+1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

= \(\frac{2}{5-1}\)

= \(\frac{2}{4}\)

= \(\frac{1}{2}\)