K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

Lại tách sai: x^2-z^2=-[(y^2-z^2)+(z^2-x^2)]=x^2-y^2. Ghi cẩu thả quá

30 tháng 7 2015

= x( y^2 - z^ 2) + y ( z^2 - x^2) - z ( y^2 - z^2) +  z ( z^2 - x^ 2)

= ( x- z )( y^2 - z^2) + 

9 tháng 8 2015

b)x(y+z)2+y(z+x)2+z(x+y)2-4xyz

=[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2

=x(y2+2yz+z2-2yz)+y(x2+z2+2xz-2xz)+z(x+y)2

=x(y2+z2)+y(x2+z2)+z(x+y)2

=xy2+xz2+x2y+yz2+(xz+yz)(x+y)

=xy(x+y)+z2(x+y)+(xz+yz)(x+y)

=(x+y)(xy+z2+xz+yz)

=(x+y)[x(y+z)+z(y+z)]

=(x+y)(y+z)(x+z)

9 tháng 8 2015

a)x(y2-z2)+y(z2-x2)+z(x2-y2)

=x(y-z)(y+z)+yz2-x2y+x2z-y2z

=(y-z)(xy+xz)-x2(y-z)-yz(y-z)

=(y-z)(xy+xz-x2-yz)

=(y-z)[x(y-x)-z(y-x)]

=(y-z)(y-x)(x-z)

19 tháng 8 2016

2(x4+y4+z4)-(x2+y2+z2)2-2(x2+y2+z2)(x+y+z)2+(x+y+z)4

=2(x4+y4+z4)-(x2+y2+z2)2+(x+y+z)2[-2(x2+y2+z2)+(x+y+z)2]

tới đây r` sao đặt ẩn phân tích tiếp chắc  =="

 

 

 

17 tháng 10 2017

=2(x4+y4+z4+xy+xz+yz)

nhấn vào đây nhé có 2 cách làm: Chuyên đề Bồi dưỡng học sinh giỏi - Phân tích đa thức thành nhân tử - Giáo Án, Bài Giảng

t i c k mk!! 536546456545576768978045362546115346456575676868784675462552

27 tháng 10 2019

Câu hỏi của Kim Lê Khánh Vy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 8 2020

Ta có :

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)^2.\left(x-y\right)+\left(y+z\right).\left(y^2-x^2+x^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2+z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2\right)-\left(y+z\right)\left(z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x^2-y^2\right)\left(x+y-y-z\right)-\left(z^2-x^2\right).\left(y+z-z-x\right)\)

\(=\left(x^2-y^2\right).\left(x-z\right)-\left(z^2-x^2\right).\left(y-x\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x-z\right)+\left(z-x\right)\left(z+x\right)\left(x-y\right)\)

\(=\left(x-y\right).\left[\left(x+y\right)\left(x-z\right)+\left(z-x\right).\left(x+z\right)\right]\)

\(=\left(x-y\right)\left(x^2-zx+xy-yz+zx+z^2-x^2-xz\right)\)

\(=\left(x-y\right)\left(z^2-zx+xy-yz\right)\)

\(=\left(x-y\right)\left[z.\left(z-x\right)-y.\left(z-x\right)\right]\)

\(=\left(x-y\right)\left(z-y\right)\left(z-x\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

14 tháng 8 2020

Ta có :

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)^2.\left(x-y\right)+\left(y+z\right).\left(y^2-x^2+x^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2+z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2\right)-\left(y+z\right)\left(z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x^2-y^2\right)\left(x+y-y-z\right)-\left(z^2-x^2\right).\left(y+z-z-x\right)\)

\(=\left(x^2-y^2\right).\left(x-z\right)-\left(z^2-x^2\right).\left(y-x\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x-z\right)+\left(z-x\right)\left(z+x\right)\left(x-y\right)\)

\(=\left(x-y\right).\left[\left(x+y\right)\left(x-z\right)+\left(z-x\right).\left(x+z\right)\right]\)

\(=\left(x-y\right)\left(x^2-zx+xy-yz+zx+z^2-x^2-xz\right)\)

\(=\left(x-y\right)\left(z^2-zx+xy-yz\right)\)

\(=\left(x-y\right)\left[z.\left(z-x\right)-y.\left(z-x\right)\right]\)

\(=\left(x-y\right)\left(z-y\right)\left(z-x\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

13 tháng 8 2020

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=-xy^2+yx^2-yz^2+zy^2-xz^2+zx^2\)

\(=xy^2\left(1-1\right)+yz^2\left(1-1\right)+zx^2\left(1-1\right)\)

\(=\left(xy^2+yz^2+zx^2\right).0\left(=0\right)\)