\(\frac{5}{x^2+y^2}+\frac{3}{xy}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2021

Ta có: 

\(P=\frac{5}{x^2+y^2}+\frac{3}{xy}\)

\(P=\frac{1}{\frac{x^2+y^2}{5}}+\frac{1}{\frac{2}{5}xy}+\frac{1}{2xy}\)

\(\ge\frac{\left(1+1\right)^2}{\frac{x^2+y^2}{5}+\frac{2xy}{5}}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\)

\(=\frac{4}{\frac{\left(x+y\right)^2}{5}}+\frac{1}{\frac{3^2}{2}}=\frac{4}{\frac{3^2}{5}}+\frac{2}{9}=\frac{22}{9}\)

Dấu "=" xảy ra khi: x = y = 3/2

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

1 tháng 6 2017

TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)

Câu b :

\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)

\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)

Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)

30 tháng 6 2017

Ta có : \(M=\frac{x-y}{x+y}\)

=> \(M^2=\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}\)

Lại có : \(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow x^2+y^2=\frac{10}{3}xy\)

Do đo : \(M^2=\frac{\frac{10}{3}xy-2xy}{\frac{10}{3}xy+2xy}=\frac{\frac{4}{3}xy}{\frac{16}{3}xy}=\frac{1}{4}\)

\(\Rightarrow M=-\frac{1}{2};\frac{1}{2}\)

21 tháng 11 2017

Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)

\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)

Vậy M=\(\frac{1}{4}\)

17 tháng 12 2017

Áp dụng 2 bđt đó là : 1/a+1/b+1/c >= 9/a+b+c và ab+bc+ca <= a^2+b^2+c^2

A >= 9/6+xy+yz+zx >= 9/6+x^2+y^2+z^2 = 9/6+3 = 2

Dấu "=" xảy ra <=> x=y=z=1

Vậy Min A = 1 <=> x=y=z=1

k mk nha

9 tháng 4 2017

Áp dụng BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ta có: 

\(\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\right)^2\ge3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge9\)

Đẳng thức xảy ra khi \(x=y=z=1\)