
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
\(A=4x^2+4x-1\)
\(=4x^2+4x+1-2\)
\(=\left(2x+1\right)^2-2\ge-2\)
Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)
Bài 2:
Bình phương 2 vế
\(\sqrt{\left(3x^2-4x+3\right)^2}=\left(1-2x\right)^2\)
\(\Leftrightarrow3x^2-4x+3=4x^2-4x+1\)
\(\Leftrightarrow2-x^2\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2}\) (tm)
\(x=-\sqrt{a}\Rightarrow-\sqrt{2}=-\sqrt{a}\Rightarrow a=2\)
4x^2+4x-1
=4x^2+4x+1-2
=(2x+1)^2-2
=> (2x+1)^2\(\ge\)0 voi moi x
=> (2x+1)^2 \(\ge\)2
=> GTNN la 2

Đk: \(x\ge-\frac{1}{4}\)
pt <=> \(4x^2+4x+2=2\sqrt{4x-1}\)
<=> \(\left(2x+1\right)^2+1=2\sqrt{2\left(2x+1\right)-1}\)
Đặt \(\sqrt{2\left(2x+1\right)-1}=a\left(a\ge0\right)\)
Ta có hệ \(\left\{{}\begin{matrix}\left(2x+1\right)^2+1=2a\left(1\right)\\a^2+1=2\left(2x+1\right)\left(2\right)\end{matrix}\right.\)
Từ (1),(2)=> \(\left(2x+1\right)^2-a^2=2a-2\left(2x+1\right)\)
<=> \(\left(2x+1-a\right)\left(2x+1+a\right)=-2\left(2x+1-a\right)\)
<=> \(\left(2x+1-a\right)\left(2x+1+a\right)+2\left(2x+1-a\right)=0\)
<=> \(\left(2x+1-a\right)\left(2x+a+3\right)=0\)( *)
vì \(x\ge-\frac{1}{4}\) và \(a\ge0\)=> \(2x+a+3\ge2.\frac{-1}{4}+0+3=\frac{5}{2}>0\)
(*) => \(2x+1-a=0\)
<=> \(2x+1=a\)
<=> \(2x+1=\sqrt{2\left(2x+1\right)-1}\)
=> \(4x^2+4x+1=2\left(2x+1\right)-1\)
<=> \(4x^2+4x+1-4x-1=0\)
<=> \(4x^2=0\)
<=> x=0 (t/m)

\(\Leftrightarrow2x^3-3x^2+6x+2x^2-3x+6=0\)
\(\Leftrightarrow x\left(2x^2-3x+6\right)+2x^2-3x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x+6=0\left(vn\right)\end{matrix}\right.\)

ban co the nao giai chi tiet cho minh dc ko
\(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{3}{4}x^2\\ \Leftrightarrow x\left(\dfrac{2}{3}-\dfrac{1}{2}\right)=\dfrac{3}{4}x^2\\\Leftrightarrow\dfrac{1}{6}x=\dfrac{3}{4}x^2\\ \Leftrightarrow\dfrac{3}{4}x^2-\dfrac{1}{6}x=0\\ \Leftrightarrow x\left(\dfrac{3}{4}x-\dfrac{1}{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{3}{4}x-\dfrac{1}{6}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{3}{4}x=\dfrac{1}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{2}{9}\end{matrix}\right.\)
\(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{3}{4}x^2\\ \Leftrightarrow\dfrac{1}{6}x=\dfrac{3}{4}x^2\\ \Leftrightarrow\dfrac{3}{4}x\left(x-\dfrac{2}{9}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{9}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{9}\end{matrix}\right.\)