

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi Hannah lấy một chiếc kẹo ở lần đầu tiên, có 6/n xác suất cô lấy phải chiếc kẹo màu cam.
Bởi vì có 6 chiếc kẹo màu cam trong tổng số n chiếc kẹo.
Khi Hannah lấy một chiếc kẹo nữa ở lần thứ 2, có 5/(n-1) xác suất cô lấy phải chiếc kẹo màu cam.
Bởi vì chỉ còn 5 chiếc kẹo màu cam trong tổng số n-1 chiếc kẹo.
Xác suất lấy được 2 chiếc kẹo màu cam trong 2 lần chính là xác suất lần đầu nhân với xác suất lần thứ hai. (Đó cũng chính là kiến thức quan trọng nhất ta học được từ bài toán này).
Như vậy ta có, xác suất lấy được 2 chiếc kẹo màu cam là 6/n x 5/n-1
Mà đề bài cho dữ liệu xác suất Hannah lấy được 2 chiếc kẹo màu cam là 1/3.
Nên: 6/n x 5/n-1 = 1/3
Đến đây, tất cả những gì cần làm là rút gọn lại phương trình này.
(6x5)/n(n-1) = 30/(n2 – n) = 1/3
Hay 90/(n2 – n) = 1
Vậy (n2 – n) = 90
Suy ra: n2 – n – 90 = 0
Xem thêm Lời giải bài toán gây bão mạng xã hội nước Anh
Ta có: l = 1745,25m ± 0,01m có độ chính xác đến hàng phần trăm (độ chính xác là 0,01) nên ta quy tròn số đến hàng phần chục.
Vậy số quy tròn của 1745,25m là 1745,3 m.
a) Xét trường hợp các chữ số đều bình đẳng :
Số cách sắp xếp 2 chữ số lẻ khác nhau từ A cho 4 vị trí :
\(C_3^1.C_4^1.C_2^1.C_3^1=72\)
Số cách sắp xếp 2 chữ số chẵn từ A cho 2 vị trí còn lại A :
\(C_4^1.C_2^1.C_3^1.C_1^1=24\)
=> Có tất cả : 72.24 = 1728 số
Xét trường hợp cố định số 0 đứng đầu
=> Số cách sắp xếp 2 chữ số lẻ từ A cho 3 vị trí :
\(C_3^1.C_3^1.C_2^1.C_2^1=36\)
Số cách sắp xếp 1 chữ số chẵn từ A cho vị trí còn lại :
\(C_3^1.C_1^1=3\)
=> Có tất cả : 1.36.3 = 108 số
=> Số các số thỏa mãn đề : 1728 - 108 = 1620 (số)
b) Gọi số thỏa mãn có dạng \(\overline{abcd}\)
TH1 a = 3 => b \(\in\left\{4;5;6\right\}\) hoặc b = 2
(*) \(b\in\left\{4;5;6\right\}\) => Số các số cần tìm : \(1.C_3^1.A_5^2=60\)
(*) b = 2 => Số các số cần tìm : \(1.1.1.C_2^1+1.1.1.C_4^1=6\)
TH1 có 66 số
TH2 \(a\in\left\{4;5;6\right\}\)
TH2 có : \(C_3^1.A_6^3=360\)
Vậy có tất cả 360 + 66 = 426
hay đó cho 100000000000000000000000000000000000000000000 LIKE
AHIHI
Gọi lượng kẹo mà Cassidy đã ăn trong ngày đầu tiên là \(x\), \(x\inℕ^∗\). Khi đó lượng kẹo mà Kyle đã ăn trong ngày đầu tiên là \(\dfrac{4}{3}x\). Đến đây, ta thêm một điều kiện nữa là \(x⋮3\).
Số kẹo còn lại là \(31-x-\dfrac{4}{3}x=31-\dfrac{7}{3}x\)
Gọi số kẹo mà Cassidy đã ăn trong ngày thứ hai là \(y,y\inℕ^∗\). Khi đó số lượng kẹo mà Kyle đã ăn trong ngày thứ hai là \(\dfrac{3}{2}y\). Đến đây, ta thêm tiếp điều kiện \(y⋮2\).
Số kẹo còn lại là \(31-\dfrac{7}{3}x-y-\dfrac{3}{2}y=31-\dfrac{7}{3}x-\dfrac{5}{2}y\).
Sau ngày thứ hai, số kẹo đã hết nhẵn nên ta có pt \(31=\dfrac{7}{3}x+\dfrac{5}{2}y\) \(\Leftrightarrow14x+15y=186\) \(\Leftrightarrow y=\dfrac{186-14x}{15}\). Do \(x\inℕ^∗\) nên \(186-14x>0\Leftrightarrow x< \dfrac{186}{14}\Leftrightarrow x\le13\).
Do \(x⋮3\) nên \(x\in\left\{3;6;9;12\right\}\). Nếu \(x=3\Rightarrow y=\dfrac{48}{5}\left(loại\right)\)
Nếu \(x=6\Rightarrow y=\dfrac{34}{5}\left(loại\right)\)
Nếu \(x=9\Rightarrow y=4\left(nhận\right)\)
Nếu \(x=12\Rightarrow y=\dfrac{6}{5}\left(loại\right)\)
Vậy \(x=9;y=4\), từ đây suy ra Cassidy đã ăn \(x+y=9+4=13\) miếng sô cô la.