K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12

2a=b nha

1 tháng 12

Olm chào em, Cách học này của em khá hữu hiệu, cái mình chưa hiểu, hiểu chưa rõ, còn lơ mơ, mình nhờ thầy cô giảng giải để nắm vững hơn kiến thức. 

       Sau đây là câu trả lời chính xác nhất từ Olm em nhé.  

           (2a - b)2 = 0

             2a - b = 0

             2a = 0 + b  (1)

             2a = b 

Chú thích biểu thức (1): Kết quả của việc chuyển hạng tử b sang vế phải kết hợp với đổi dấu.

b đang ở bên vế trái của đẳng thức và mang dấu - khi đổi sang bên vế phải của đẳng thức thfi chuyển thành dấu+  

Nên 2a - b = 0 thì suy ra 2a = 0 + b

 

 

 

Áp dụng BĐT

\(\dfrac{9}{x+y+z}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\\ \Rightarrow\dfrac{9abc}{a+3a+2c}\\ =\dfrac{9}{\left(a+c\right)\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{4}{2}\) 

Tương tự với 2 BĐT còn lại rồi cộng vế theo vế

=> 9 vế trái

 \(\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\\ +\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{a+b+c}{2}\\ =\dfrac{3\left(a+b+c\right)}{2}\\ \Rightarrow......._{\left(đpcm\right)}\)

26 tháng 3 2020

Tớ làm cho bạn mà bạn toàn ko tick

26 tháng 3 2020

a)a2(a+1)+2a(a+1)=(a2+2a)(a+1)=a(a+2)(a+1)

Ta có Ta có a(a+1)(a+2) là 3 số tự nhiên liên tiếp =>a(a+1)(a+2)⋮3 (1)

Mà a(a+1)\(⋮\)2 (2)

Từ (1)(2) suy ra a(a+1)(a+2)⋮6

=>a2(a+1)+2a(a+1)⋮6

b)a(2a-3)-2a(a+1)=2a2-3a-2a2-2a=-5a

Vì -5 chia hết 5

=>-5a chia hết 5

c)x2+2x+2=x2+2x+1+1=(x+1)2+1

Vì (x+1)2≥0

<=>(x+1)2+1>0

d)x2-x+1=\(x^2-\frac{2.1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(đpcm)

e)-x2+4x-5=-(x2-4x+5)=-(x2-4x+4)-1=-(x-2)2-1

Vì -(x-2)2≤0=>-(x-2)2-1<0(đpcm)

rồi nhébanhbanhquahahaleuleu

a) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=\left(a+1\right)\cdot\left(a^2+2a\right)\)

\(=a\cdot\left(a+1\right)\cdot\left(a+2\right)\)

Vì a và a+1 là hai số nguyên liên tiếp nên \(a\cdot\left(a+1\right)⋮2\)(1)

Vì a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮3\)(2)

mà 2 và 3 là hai số nguyên tố cùng nhau(3)

nên từ (1); (2) và (3) suy ra \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮6\forall a\in Z\)

hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)(đpcm)

b) Ta có: \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=2a^2-3a-2a^2-2a\)

\(=-5a⋮5\forall a\in Z\)

hay \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\forall a\in Z\)(đpcm)

c) Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\in Z\)

hay \(x^2+2x+2>0\forall x\in Z\)(đpcm)

d) Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in Z\)

hay \(x^2-x+1>0\forall x\in Z\)(đpcm)

e) Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\in Z\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\in Z\)

hay \(-x^2+4x-5< 0\forall x\in Z\)

18 tháng 9 2018

a) Ta có: \(a^2-2a+2\)

\(=\left(a^2-2a+1\right)+1\)

\(=\left(a-1\right)^2+1>0\) với mọi a

\(=>\left(đpcm\right)\)

18 tháng 9 2018

b)Ta có: \(6b-b^2-10\)

\(=-\left(b^2-6b+3^2\right)-1\)

\(=-\left(b-3\right)^2-1< 0\) với mọi b

=>(đpcm).

22 tháng 9 2020

a) a2 - 2a + 2 = ( a2 - 2a + 1 ) + 1 = ( a - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

b) 6b - b2 - 10 = -( b2 - 6b + 9 ) - 1 = -( b - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

23 tháng 11 2017

Đặt: \(L=\dfrac{3\left(a+2\right)}{a^3+a^2+a+1}+\dfrac{2a^2-a-10}{a^3-a^2+a-1}\)

Ta có:

\(\dfrac{3\left(a+2\right)}{a^3+a^2+a+1}=\dfrac{3\left(a+2\right)}{a^2\left(a+1\right)+1\left(a+1\right)}=\dfrac{3\left(a+2\right)}{\left(a^2+1\right)\left(a+1\right)}\)

\(\dfrac{2a^2-a-10}{a^3-a^2+a-1}=\dfrac{a\left(2a-1\right)-10}{a^2\left(a-1\right)+1\left(a-1\right)}=\dfrac{a\left(2a-1\right)-10}{\left(a^2+1\right)\left(a-1\right)}\)

Như vậy \(L=\dfrac{3\left(a+2\right)}{\left(a^2+1\right)\left(a+1\right)}+\dfrac{a\left(2a-1\right)-10}{\left(a^2+1\right)\left(a-1\right)}\)

Đặt:

\(N=\dfrac{5}{a^2+1}+\dfrac{3}{2a+2}-\dfrac{3}{2a-2}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{3\left(2a-2\right)}{\left(2a+2\right)\left(2a-2\right)}-\dfrac{3\left(2a+2\right)}{\left(2a+2\right)\left(2a-2\right)}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{6a-6}{4a^2-4}-\dfrac{6a+6}{4a^2-4}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{6a-6-6a-6}{4a^2-4}=\dfrac{5}{a^2+1}+\dfrac{-12}{4a^2-4}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{-12}{4\left(a^2-1\right)}=\dfrac{5}{a^2+1}+\dfrac{-3}{a^2-1}\)

\(N=\dfrac{5\left(a^2-1\right)}{\left(a^2+1\right)\left(a^2-1\right)}+\dfrac{-3\left(a^2+1\right)}{\left(a^2-1\right)\left(a^2+1\right)}\)

\(N=\dfrac{5a^2-5-3a^2-3}{a^4-1}=\dfrac{2a^2-8}{a^4-1}\)

Thay M với N vào A Mình cạn sức rồi bucminhbucminhbucminh

24 tháng 11 2017

Cảm ơn nhiều!!!!