Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13
\(A=3+3^2+3^3+3^4+...+3^{2015}+3^{2016}\\\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2015}\left(1+3\right)\)
\(A=\left(1+3\right).\left(3+3^3+...+3^{2015}\right)\)
\(A=4.\left(3+3^3+...+3^{2015}\right)\)
Suy ra : \(A⋮4\)
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Vì a chia cho 3 dư 1
\(\Rightarrow\)a có dạng 3k + 1 (\(k\in N\))
Vì b chia cho 3 dư 2
\(\Rightarrow\)b có dạng 3k + 2 (\(k\in N\))
\(\Rightarrow a+b=3k+1+3k+2\)
\(\Rightarrow a+b=\left(3k+3k\right)+\left(1+2\right)\)
\(\Rightarrow a+b=6k+3=3\left(2k+1\right)\)
\(\Rightarrow a+b⋮3\)
\(\RightarrowĐPCM\)
Nếu : a+2b chia hết cho 3
=>5.(a+2b) chia hết cho 3
=>5a+10b chia hết cho 3
Mà : 3a và 9 b đều chia hết cho 3
=> 5a+10b-3a-9b chia hết cho 3 hay 2a+b chia hết cho 3 (1)
Nếu : 2a+b chia hết cho 3
Có 3a + 9b đều chia hết cho 3 => 2a+b+3a+9b chia hết cho 3 hay 5a+10b chia hết cho 3
=>5.(a+2b) chia hết cho 3
=> a+2b chia hết cho 3 ( vì 5 và 3 là 2 số nguyên tố cùng nhau ) (2)
Từ (1) và (2) => ĐPCM
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 2
=>p^2-1 chia hết cho 2 (2)
từ (1) và (2) => p^2-1 chia hết chia hết cho với mọi số nguyên tố p>3
Vì p là số nguyên tố, p>3 nên p không chia hết cho 3
Vì p không chia hết cho 3 nên p có 1 trong 2 dạng: 3k+1, 3k+2(k thuộc N*)
Xét hai trường hợp:
+)p=3k+1(k thuộc N*)
Khi đó p2-1=(3k+1)2-1=9k2+6k+1-1=9k2+6k=3(3k2+2k)
Vì k thuộc N* nên 3k2+2k thuộc N*
Vì thế 3(3k2+2k) chia hết cho 3 nên p2-1 chi hết cho 3
+)p=3k+2(k thuộc N*)
Khi đó p2-1=(3k+2)2-1=9k2+12k+4-1=9k2+12k+3=3(3k2+4k+1)
vì k thuộc N* nên 3k2+4k+1 thuộc N*
Vì thế 3(3k2+4k+1) chia hết cho 3 nên p2-1 chia hết cho 3
Vậy nếu p là số nguyên tố lớn hơn 3 thì p2-1 chia hết cho 3
Giả sử là số nguyên tố lớn hơn , vì vậy p là số lẻ. Do đó, ta có thể biểu diễn p dưới dạng với là một số nguyên không âm.
Thay vào , ta có:
Ta nhận thấy rằng một trong hai số hoặc phải là số chẵn. Vì vậy, một trong hai số hoặc chia hết cho . Vì vậy, chia hết cho
Ngoài ra, vì p là số nguyên tố lớn hơn , nên p không chia hết cho . Vì vậy, và không thể đều chia hết cho . Do đó, hoặc phải chia hết cho . Vì vậy, chia hết cho .
Tổng hợp lại, chia hết cho và . Vì và nguyên tố cùng nhau, nên chia hết cho
Xét số nguyên tố p khi chia cho 3.
Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3
Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3
Vậy p2 - 1 chia hết cho 3.
Đúng 100%
- Xét: Tổng B có 101 số hạng, nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng
=> B = 1 + (3+32+33+34) + (35+36+37+38) +.....+ (397+398+399+3100)
=> B = 1 + 3(1+3+32+33) + 35(1+3+32+33) +.....+ 397(1+3+32+33)
=> B = 1 + 40.(3+35+...+397)
Có 1 chia 40 dư 1
40.(3+35+...+397)
chia hết cho 40
=> 1 + 40.(3+35+...+397) chia 40 dư 1
=> B chia 40 dư 1
A = 4 + 42 + 43 + ... + 424
= (4 + 42) + (43 + 44) + ... + (423 + 424)
= 4 (1 + 4) + 43 (1 + 4) + ... + 423 (1 + 4)
= 4 . 5 + 43 . 5 + ... + 423 . 5
= 20 + 20 . 42 + ... + 20 . 422
= 20 (1 + 42 + ... + 422) chia hết cho 20
ĐPCM
Ta có: \(1+3+3^2+...+3^{2024}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2022}+3^{2023}+3^{2024}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2022}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{2022}\right)⋮13\)