K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

ta có \(\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}\right)\)

=\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left(\frac{n+1-n-1}{n\left(n+1\right)}\right)=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\left(ĐPCM\right)\)

^_^

29 tháng 3 2016

\(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(\left(1-\frac{2}{2.3}\right)\left(...\right).....\left[1-\frac{2}{n\left(n+1\right)}\right]=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}....\frac{\left(n-2\right)\left(n+1\right)}{\left(n-1\right).n}.\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}=\)

\(=\frac{1}{3}.\frac{n+2}{n}=\frac{1}{3}-\frac{1}{3}.\frac{2}{n}>\frac{1}{3}\)

23 tháng 2 2020

Xét dạng tổng quát có: \(\frac{1}{\sqrt{n+1}\left(n+1\right)+n\sqrt{n}}=\frac{1}{\left(\sqrt{n}+\sqrt{n+1}\right)\left[n-\sqrt{n\left(n+1\right)}+n+1\right]}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n}+\sqrt{n+1}\right)\left[n-\sqrt{n\left(n+1\right)}+n+1\right]}=\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)-\sqrt{n\left(n+1\right)}}\)

\(< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}-\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng vào bài toán ta có: 

\(\frac{1}{2\sqrt{2}+1\sqrt{1}}< 1-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

.....

\(\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cộng vế theo vế =>\(VT< 1-\frac{1}{\sqrt{n+1}}\left(ĐPCM\right)\)

15 tháng 11 2018

\(\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{\left(n-1\right)^2-1}{\left(n-1\right)^2}\right)\left(\frac{n^2-1}{n^2}\right)\)

=\(\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}...\frac{\left(n-2\right)n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)

=\(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{\left(n-2\right).n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}=\frac{1}{2}.\frac{n+1}{n}=\frac{1}{2}+\frac{1}{2n}>\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}=\frac{1}{(\sqrt{n}+\sqrt{n+1})[n+\sqrt{n(n+1)}+n+1)]}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(\sqrt{n}+\sqrt{n+1})[n+\sqrt{n(n+1)}+n+1)]}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)-\sqrt{n(n+1)}}<\frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}-\sqrt{n(n+1)}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(\frac{1}{2\sqrt{2}+1\sqrt{1}}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......

\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cộng theo vế:

\(\Rightarrow \text{VT}< 1-\frac{1}{\sqrt{n+1}}\) (đpcm)

18 tháng 7 2017

 Đặt biểu thức trên là A.

Ta có: \(\left(\sqrt{n+1}+\sqrt{n}\right)\)).(\(\sqrt{n+1}-\sqrt{n}\))=1

=>\(\frac{1}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\left(\sqrt{n+1}-\sqrt{n}\right)\)

Từ trên: \(\frac{1}{\left(2n+1\right).\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}\)

Lại có :\(\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)+n}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right).n}=\frac{1}{2}.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)(Bất đẳng thức Cô-si)

Thế số vào, ta được :

A<\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{n+1}}\right)\)=\(\frac{1}{2}.\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)