Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADC có
M là trung điểm của AD
MN//DC
Do đó: N là trung điểm của AC
Xét ΔCAB có
N là trung điểm của CA
NK//AB
Do đó:K là trung điểm của CB
b: \(AB=\dfrac{1}{2}\cdot DC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)
Xét ΔADC có M,N lần lượt là trung điểm của AD,AC
=>MN là đường trung bình của ΔADC
=>\(MN=\dfrac{DC}{2}=10\left(cm\right)\)
Xét ΔCAB có N,K lần lượt là trung điểm của CA,CB
=>NK là đường trung bình của ΔCBA
=>\(NK=\dfrac{AB}{2}=5\left(cm\right)\)
MN+NK=MK
=>MK=10+5=15(cm)
Gọi I là trung điểm của AB.
Giả sử đường thẳng IE cắt CD tại K1
Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD
Giả sử đường thẳng IF cắt CD tại K2
Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD
do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau
Vậy ta có đpcm