K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)

Từ BĐT vừa chứng minh trên ta suy ra

\(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\dfrac{a+b}{2}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\)

\(\Rightarrow ab\le\left(\dfrac{6}{2}\right)^2=3^2=9\left(a+b=6\right)\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=6\end{matrix}\right.\)\(\Rightarrow a=b=3\)

24 tháng 4 2017

 có a+b=6 suy ra (a+ b)2= 36 mà (a+ b)2 lớn hơn hoặc bằng 4ab nên 36 lớn hơn hoặc bằng 4ab 

suy ra ab nhỏ hơn hơn hoặc bằng 9

k mình nha

24 tháng 4 2017

ta có a+b=\(\left(\sqrt{a}\right)^2\)\(+\left(\sqrt{b}\right)^2\)Mặt khác ta có \(\left(\sqrt{a}\right)^2-2\left(\sqrt{a}\right)\left(\sqrt{b}\right)\)\(+\left(\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\)\(\Rightarrow\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\ge2\left(\sqrt{a}\right)\left(\sqrt{b}\right)\)=\(2\sqrt{ab}\)\(\Rightarrow a+b\ge2\sqrt{ab}\)\(\Rightarrow\left(a+b\right)^2\ge4ab\)\(\Rightarrow36\ge4ab\Rightarrow ab\le9\)

13 tháng 4 2016

vì a+b=6 nên a,b<=6 

a0123456
b6543210

=> ab<=9

25 tháng 7 2021

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

NV
25 tháng 7 2021

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

11 tháng 4 2022

\(a< \sqrt{ab}\)

\(\Leftrightarrow a^2< ab\)

\(\Leftrightarrow a^2-ab< 0\)

\(\Leftrightarrow a\left(a-b\right)< 0\) (đúng) (1)

\(\sqrt{ab}< \dfrac{a+b}{2}\) (áp dụng BĐT AM-GM). (2)

\(\dfrac{a+b}{2}< b\)

\(\Leftrightarrow\dfrac{a}{2}-\dfrac{b}{2}< 0\)

\(\Leftrightarrow\dfrac{a-b}{2}< 0\) (đúng) (3)

-Từ (1), (2), (3) ta suy ra đpcm.

Giải thích các bước giải:

 

a+b+2024c=c3

 

⇔a+b+c=c3−2023c

 

⇔a+b+c=c(c2−2023)

 

VP =c(c2−2023)

 

=c(c2−1−2022)

 

=c[(c−1)(c+1)−2022]

 

Vì (c−1)c(c+1) là 3 số nguyên liên tiếp ⇒(c−1)c(c+1)⋮23

 

Mà 2022c⋮23⇒(c−1)c(c+1)⋮23

 

⇒a+b+c⋮23(1)

 

Xét hiệu a3+b3+c3−a−b−c

 

=a(a2−1)+b(b2−1)+c(c2−1)

 

=(a−1)a(a+1)+(b−1)b(b+1)+(c−1)c(c+1)

 

Vì (a−1,a,a+1);(b−1,b,b+1);(c−1,c,c+1) là các nhóm số nguyên liên tiếp 

 

⇒(a−1)a(a+1)+(b−1)b(b+1)+(c−1)c(c+1)⋮23

 

⇒a3+b3+c3−a−b−c⋮23(2)

 

Từ (1) và (2)⇒a3+b3+c3⋮23

 

Mà ƯCLN(2,3) = 1 ⇒a3+b3+c3⋮6

NV
25 tháng 2 2021

\(2a+b=2\Rightarrow b=2-2a\)

\(ab=a\left(2-2a\right)=-2a^2+2a=-2\left(a-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};1\right)\)

17 tháng 4 2018

Xuất phát từ điều cần chứng minh Û N(A + B) = B(M + N)

Rút gọn còn AN = BM hay A B = M N  (đúng với giả thiết).