Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (x-4)A(x)=(x+2)A(x-1)
Thay x=4 vào đa thức (x-4)A(x)=(x+2)A(x-1) ta có:
(4-4)A(4)=(4+2)A(4-1)
=>0A(4)=6A(3)
=>0= A(3)
=> x=3 là một nghiệm của đa thức A(x) (1)
Thay x=-2 vào đa thức (x-4)A(x)=(x+2)A(x-1) ta có:
(-2-4)A(-2)=(-2+2)A(-2-1)
=>-6A(-2)=0A(-3)
=>-6A(-2)=0
=>A(-2)=0
=> x=-2 là một nghiệm của đa thức A(x) (2)
Từ (1) và (2)=> đa thức A(x) có ít nhất 2 nghiệm
-Cho x=0=>0.f(1)=2.f(0)
=> 0 =2.f(0)
=> f(0)=0
Vậy x=0 là nghiệm của f(x) (1)
-Cho x=-2=> -2.f(-1)=0.f(-2)
=> -2.f(-1)=0
=> f(-1)=0
Vậy x=-1 là nghiệm của f(x) (2)
Từ (1) và (2)=> f(x) có ít nhất 2 nghiệm phân biệt (đpcm)
Ghi chú: Ở đây mình xét 2 giá trị của x sao cho một vế bằng 0 rồi đi tìm nghiệm của f(x) chứ không phải là xét giá trị của x để suy ra nó là nghiêm của f(x) bạn nhé!!!
Thay \(x=0\) vào ta có :
\(0.P\left(1+1\right)=\left(1^2-4\right).P\left(0\right)\Leftrightarrow0=-3.P\left(0\right)\Leftrightarrow P\left(0\right)=0\)
Thay \(x=\pm2\) vào ta có : ... ( Chứng minh tương tự )
=> Vậy P ( x ) có ít nhất 3 nghiệm là x = 0; x = 2 và x = -2
+ Với \(x=0\Rightarrow0.P\left(0+1\right)=\left(0-4\right).P\left(0\right)\)
\(\Leftrightarrow-4.P\left(0\right)=0\)
\(\Rightarrow P\left(0\right)=0\)
Vậy \(x=0\)là nghiệm của đa thức .
+ Với \(x=2\Rightarrow2.P\left(2+1\right)=\left(4-4\right).P\left(2\right)\)
\(\Leftrightarrow2P\left(3\right)=0\)
\(\Leftrightarrow P\left(3\right)=0\)
Vậy \(x=3\)là nghiệm của đa thức .
+ Với \(x=-2\Rightarrow\left(-2\right).P\left(-2+1\right)=\left(4-4\right).P\left(-2\right)\)
\(\Leftrightarrow\left(-2\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
Vậy \(x=-1\)là nghiệm của đa thức .
\(\Rightarrow\)\(P\left(x\right)\) có ít nhất 3 nghiệm .
a) Vì x=14 nên x+1=15
Thay 15=x+1 vào A(x) Ta có:
A(x)= x^15-(x+1)x^14+(x+1)x^13-(x+1)x^12+...+(x+1)x^3-(X+1)^2+(x+1)x-15
=x^15-x^15-x^14+x^14+x^13-x^13-...+X^4+x^3-X^3-x^2+x^2-x-15
=x-15
=> A(14)=14-15=-1
Vậy A(14)=-1
b) Với x=10 ta có
0.f(-4)=-2.f(0)
=>0=2.f(0) => f(0)=0
=> Đa thức f(x) có 1 nghiệm là 0 (1)
Với x =2 tao có: 2.f(-2)=0.(f) (2)
Từ (1) và (2)
=> Đa thức này có 2 nghiệm
k mình nha
x=0⇒0.h(1)=2.h(0)=0⇒h(0)=0x=0⇒0.h(1)=2.h(0)=0⇒h(0)=0=> x=0 là nghiệm
x=−2⇒−2h(−1)=0.h(−3)⇒h(-1)=0=> x=-1 là nghiệm
Vậy đa thức f(x) có hai nghiệm x={0,-1} => dpcm
Vậy h(x) có 2 nghiệm nhé. Sorry viết nhầm
a)x.f(x + 1) - ( x + 2). f( x) = 0 (1)
*Với x=0 thì (1) 0.f(1) – 2.f(0) =0 f(0)=0. Vậy f(x) có một nghiệm là 0.
*Với x=-2 thì (1) -2.f(-1) – 0.f(0) =0 f(-1)=0. Vậy f(x) có một nghiệm là -1.
KL: Vậy f(x) có ít nhất hai nghiệm là 0 và -1(ĐPCM).
Cách khác:
a)Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
\(\left(x-4\right)A\left(x\right)=\left(x+2\right)A\left(x-1\right)\) (1)
Thay \(x=4\) vào (1) ta được:
\(\left(4-4\right).A\left(4\right)=\left(4+2\right).A\left(4-1\right)\Rightarrow0.A\left(4\right)=6.A\left(3\right)\)
\(\Rightarrow A\left(3\right)=0\Rightarrow A\left(x\right)\) có nghiệm \(x=3\)
Thay \(x=-2\) vào (1) ta được:
\(\left(-2-4\right).A\left(-2\right)=\left(-2+2\right).A\left(-2-1\right)\)
\(\Rightarrow-6A\left(-2\right)=0.A\left(-3\right)=0\)
\(\Rightarrow A\left(-2\right)=0\Rightarrow A\left(x\right)\) có nghiệm \(x=-2\)
Vậy \(A\left(x\right)\) có ít nhất 2 nghiệm phân biệt \(x=-2;x=3\)