K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Cho e làm thử ạ:(

\(P=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)

\(=\frac{a+b+c+ab+bc+ca+abc+1}{1-\left(a+b+c\right)+ab+bc+ca-abc}\)

\(=1+\frac{2\left(a+b+c\right)+2abc}{1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc}\)

\(=1+\frac{2+2abc}{ab+bc+ca-abc}\)

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)\rightarrow\left(p,q,r\right)\)

Khi đó \(P=1+\frac{2+2r}{q-r}\)

Áp dụng \(3q\le p^2\Rightarrow q\le\frac{1}{3}\Rightarrow P\ge1+\frac{2+2r}{\frac{1}{3}-r}=1+\frac{6+6r}{1-3r}\)

 Sau khi đưa P về 1 biến thì e tịt ngòi r ạ:( Đến đây thì đi kiểu nào cx ngược dấu:( 

12 tháng 11 2019

Ta có: \(a+b+c=1\); a, b , c > 0 => 0 < a; b; c <1 

=> \(\hept{\begin{cases}1+a=\left(1-b\right)+\left(1-c\right)\ge2\sqrt{\left(1-b\right)\left(1-c\right)}\\1+b=\left(1-c\right)+\left(1-a\right)\ge2\sqrt{\left(1-c\right)\left(1-a\right)}\\1+c=\left(1-a\right)+\left(1-b\right)\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\end{cases}}\)

=> \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

=> \(P\ge8\)

"=" xảy ra <=>  a = b =c = 1/ 3

20 tháng 11 2018

\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:

\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)

\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c=1

20 tháng 11 2018

VỚi các số thực: a,b,c >0 thỏa a+b+c=1. Chứng minh rằng: \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Help me

13 tháng 10 2017

Ta có:

\(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow abc\le\frac{1}{27}\)

\(X=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\)

\(=\left(1+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\right)\left(1+\frac{1}{3b}+\frac{1}{3b}+\frac{1}{3b}\right)\left(1+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}\right)\)

\(\ge\frac{4}{\sqrt[4]{27a^3}}.\frac{4}{\sqrt[4]{27b^3}}.\frac{4}{\sqrt[4]{27c^3}}\)

\(=\frac{4^3}{\sqrt[4]{27^3}.\sqrt[4]{a^3b^3c^3}}\ge\frac{4^3}{\sqrt[4]{27^3}.\sqrt[4]{\frac{1}{27^3}}}=64\)

11 tháng 11 2019

Có đk gì thêm về a, b, c ko ạ?(VD như a, b, c >0)

Y
24 tháng 5 2019

Theo bđt AM-GM :

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\)\(\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}\cdot\frac{b+1}{8}\cdot\frac{c+1}{8}}=\frac{3a}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}=\frac{b+1}{8}=\frac{c+1}{8}\)

\(\Leftrightarrow2a=b+1=c+1\)

+ Tương tự ta cm đc :

\(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow2a=b+1=c+1\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{c+1}{8}\ge\frac{3c}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow2a=a+1=b+1\)

Do đó : \(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+b+c+3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}\cdot3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)

Dấu "=" xảy ra <=> a = b = c = 1

24 tháng 5 2019

Áp dụng bđt AM-GM

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3}{4}a\)

\(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+b}{8}\ge\frac{3}{4}b\)

\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)

\(\Rightarrow A+\frac{6+2a+2b+2c}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow A+\frac{3}{4}\ge\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{2}\sqrt[3]{abc}=\frac{3}{2}\)

\(\Rightarrow A\ge\frac{3}{4}\)

\("="\Leftrightarrow a=b=c=1\)

NV
22 tháng 12 2020

\(A=\dfrac{\left(a+b+c+a\right)\left(a+b+c+b\right)\left(a+b+c+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(A\ge\dfrac{2\sqrt{\left(a+b\right)\left(a+c\right)}.2\sqrt{\left(a+b\right)\left(b+c\right)}.2\sqrt{\left(a+c\right)\left(b+c\right)}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

22 tháng 12 2020

cảm ơn