K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Đặt \(\hept{\begin{cases}b-1=x\\a-1=y\end{cases}\left(x,y>0\right)}\)

Ta có : \(P=\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{x}\)

\(=\frac{x^2+2x+1}{y}+\frac{y^2+2y+1}{x}\)

\(=\left(\frac{x^2}{y}+\frac{y^2}{x}\right)+2.\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{x}+\frac{1}{y}\)

\(\ge\frac{\left(x+y\right)^2}{x+y}+2\cdot2.\sqrt{\frac{x}{y}\cdot\frac{y}{x}}+\frac{4}{x+y}\)

\(=\left(x+y+\frac{4}{x+y}\right)+4\)

\(\ge2\sqrt{\left(x+y\right)\cdot\frac{4}{x+y}}+4=2.2+4=8\)

Do đó \(P\ge8\)

Dấu "=" xảy ra khi \(a=b=2\)

29 tháng 9 2020

Thên 1 cách: \(P=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}\)

Đặt a + b =t > 2 

=> \(P=\frac{t^2}{t-2}=\frac{t^2-4+4}{t-2}=\left(t+2\right)+\frac{4}{t-2}=\left(t-2\right)+\frac{4}{t-2}+4\ge4+4=8\)

Dấu "=" xảy ra <=>a = b và  t - 2 = 2 <=> a = b = 2

16 tháng 3 2020

từ từ hồi trả lời cho câu này củng hơi khó cần thời gian suy nghĩ

4 tháng 2 2022

Từ bất đẳng thức luôn đúng \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)(*)

Vì a, b là các số thực dương nên nhân cả 2 vế của (*) cho \(\frac{1}{ab\left(a+b\right)}\), ta có:

\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4}{ab\left(a+b\right)}\)\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\Leftrightarrow P\ge\frac{4}{a+b}\)
Lại có \(a+b\le2\sqrt{2}\)\(\Leftrightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Từ đó ta có \(P\ge\sqrt{2}\)

Dấu "=" xảy ra khi \(a=b=\sqrt{2}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Lý giải xíu chỗ $3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)$ cho bạn nào chưa rõ:

Áp dụng BĐT AM-GM:

$(a^2+b^2+c^2)(a+b+c)=(a^3+ac^2)+(b^3+a^2b)+(c^3+b^2c)+(ab^2+bc^2+ca^2)$

$\geq 2a^2c+2ab^2+2bc^2+(ab^2+bc^2+ca^2)=3(ab^2+bc^2+ca^2)$

27 tháng 1 2018

ttu https://olm.vn/hoi-dap/question/1078885.html

nhe dau = xay ra khi a=b=1/3

27 tháng 1 2018

thanks, t làm đc rồi :)))