K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

Xét : 1/x^2+x + x/2 + x+1/4 = 1/x.(x+1) +x/2 + x+1/4 >= 3\(\sqrt[3]{\frac{1}{x.\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}\) = 3/2

=> 1/x^2+x >= 3/2 - x/2 - x+1/4 = 3/2 - (3x+1)/4

Tương tự : 1/y^2+y >= 3/2 - (3y+1)/4 ; 1/z^2+z >= 3/2 - (3z+1)/4

=> M >= 9/2 - (3x+3y+3z+3)/4 = 9/2 - (3.3+3)/4 = 9/2 - 3 = 3/2

Dấu "=" xảy ra <=> x=y=z=1

Vậy GTNN của M = 3/2 <=> x=y=z=1

Tk mk nha

16 tháng 1 2018

cảm ơn bạn nhé

AH
Akai Haruma
Giáo viên
3 tháng 2 2023

Lời giải:
Áp dụng BĐT Cô-si:

$\frac{1}{x(x+1)}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}$

Tương tự:

$\frac{1}{y(y+1)}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}$

$\frac{1}{z(z+1)}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}$

Cộng theo vế các BĐT trên:

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{4}(x+y+z)+\frac{3}{4}\geq \frac{9}{2}$

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{9}{4}+\frac{3}{4}\geq \frac{9}{2}$

$\Rightarrow \frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{3}{2}$ 

Vậy gtnn của biểu thức là $\frac{3}{2}$ khi $x=y=z=1$

22 tháng 4 2022

\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1^2}{3}=\dfrac{1}{3}\)

-Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

22 tháng 4 2022

-Những bài c/m BĐT có phương hướng sử dụng các BĐT đơn giản hơn để c/m:

-Thí dụ: BĐT Caushy:

*Hai số: \(a+b\ge\sqrt{ab}\left(a,b>0\right)\)\("="\Leftrightarrow a=b\).

\(a^2+b^2\ge2ab\) . \("="\Leftrightarrow a=b\)

-Và còn nhiều BĐT khác nữa.....

27 tháng 11 2019

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)

\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)

\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)

\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)(Svac - xơ)

Vậy \(M_{min}=\frac{49}{16}\Leftrightarrow\frac{1}{x^2}=\frac{4}{y^2}=\frac{16}{z^2}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{21}}\\y=\frac{2}{\sqrt{21}}\\z=\frac{4}{\sqrt{21}}\end{cases}}\)

27 tháng 11 2019

Cho sửa chỗ dấu "="

\("="\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)

\(\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1}{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\sqrt{\frac{1}{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)

15 tháng 4 2019

Bạn kia làm ra kết quả đúng nhưng cách làm thì tào lao nhưng vẫn ra ???

Áp dụng BĐT Cô-si ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)

Tương tự:\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\),\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)

Cộng vế với vế của 3 BĐT trên ta được:

\(P+\frac{x+y+z}{2}+\frac{\left(x+y+z\right)+3}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow P+\frac{3}{2}+\frac{6}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow P\ge\frac{3}{2}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2+x}=\frac{x}{2}=\frac{x+1}{4}\\\frac{1}{y^2+y}=\frac{y}{2}=\frac{y+1}{4}\\\frac{1}{z^2+z}=\frac{z}{2}=\frac{z+1}{4},x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy \(P_{min}=\frac{3}{2}\)khi \(x=y=z=1\)

Áp dụng bđt Bunhiacopski ta có

\(P\ge\frac{9}{x^2+y^2+z^2+x+y+z}\ge\frac{9}{2\left(x+y+z\right)}=\frac{9}{6}=\frac{3}{2}.\)

Dấu "=" xảy ra khi x=y=z=1

10 tháng 5 2019

Em có cách này nhưng không chắc

Ta sẽ c/m BĐT phụ sau:\(2x+\frac{1}{x}\ge\frac{x^2}{2}+\frac{5}{2}\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{2x}\le0\) (đúng) (ta chuyển hết VT sang vế phải rồi qui đồng lên)

Thiết lập hai BĐT tương tự và cộng theo vế ta tìm được Min

10 tháng 5 2019

Nói thêm: Do x, y, z dương và \(x^2+y^2+z^2=3\Rightarrow0< x;y;z< \sqrt{3}\) (từ đây ta mới chứng minh được BĐT phụ đúng.

5 tháng 7 2015

\(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\)

Áp dụng Côsi: \(1+y^2\ge2y\Rightarrow\frac{xy^2}{1+y^2}\le\frac{xy^2}{2y}=\frac{xy}{2}\Rightarrow-\frac{xy^2}{1+y^2}\ge-\frac{xy}{2}\)

Do đó: \(\frac{x}{1+y^2}\ge x-\frac{xy}{2}\)

Tương tự ta có: \(\frac{y}{1+z^2}\ge y-\frac{yz}{2};\frac{z}{1+x^2}\ge z-\frac{zx}{2}\)

Mà \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zy\right)\ge xy+yz+zx+2\left(xy+yz+zy\right)\)

\(\Rightarrow xy+yz+zx\le\frac{1}{3}\left(x+y+z\right)^2=3\)

 \(\Rightarrow\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{2}.3=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x = y = z = 1

Vậy GTNN của P là 1