K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10

G = \(x^2\) + \(xy\) + y2 - 3(\(x+y\)) + 3

G = \(x^2\) +2.\(\dfrac{1}{2}\) \(xy\) +\(\dfrac{1}{4}\) y2 + \(\dfrac{3}{4}\)y2 - 3\(x\) - \(\dfrac{3}{2}\)y - \(\dfrac{3}{2}\)y + 3

G = (\(x^2\)+ 2.\(\dfrac{1}{2}\)\(xy\) + \(\dfrac{y^2}{4}\)) - 3.(\(x\) + \(\dfrac{y}{2}\)) + \(\dfrac{3y^2}{4}\) - \(\dfrac{3}{2}\)y + \(\dfrac{9}{4}\) + \(\dfrac{3}{4}\)

G = (\(x+\dfrac{y}{2}\))2 - 3.(\(x+\dfrac{y}{2}\)) + \(\dfrac{9}{4}\) +  ( \(\dfrac{3y^2}{4}\) - \(\dfrac{3}{2}y\) + \(\dfrac{3}{4}\) )

G  =  (\(x+\dfrac{y}{2}\) - \(\dfrac{3}{2}\))2  + 3.(\(\dfrac{y}{2}\) - \(\dfrac{1}{2}\))2

(\(x\) + \(\dfrac{y}{2}\) - \(\dfrac{3}{2}\))2 ≥ 0; (\(\dfrac{y}{2}\) - \(\dfrac{1}{2}\))2 ≥ 0

G ≥ 0 Vậy Gmin = 0 khi 

\(\left\{{}\begin{matrix}x+\dfrac{y}{2}-\dfrac{3}{2}=0\\\dfrac{y}{2}-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+\dfrac{y}{2}=\dfrac{3}{2}\\y-1=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+y=3\\y=1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+1=3\\y=1\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy Gmin = 0 khi (\(x;y\)) = (1; 1) 

 

4 tháng 11

"Thank you" nha!👏👍_~`•《☆》

NV
8 tháng 10 2021

\(y\ge1+xy\Rightarrow1\ge\dfrac{1}{y}+x\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le4\Rightarrow\dfrac{y}{x}\ge4\)

\(G=\dfrac{x}{y}+\dfrac{y}{x}=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4=\dfrac{17}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

2 tháng 7 2018

a, \(A=x^4-2x^3+2x^2-2x+3\)

\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)

\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)

\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)

\(=\left(x^2+1\right)\left(x-1\right)^2+2\)

Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)

\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi x = 1

Vậy Amin = 2 khi x = 1

b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)

đề sai ko

c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)

Dấu "=" xảy ra khi x=1

Vậy Cmin = 5 khi x = 1

2 tháng 7 2018

2/

+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)

Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)

Dấu "=" xảy ra khi x=y=1/2

Vậy Dmax=7/2 khi x=y=1/2

+) Đề sai

+)bài này là tìm min 

 \(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra khi x=3/2

Vậy Gmin=11/4 khi x=3//2

14 tháng 8 2016

1/ B = (x+y)((x+y)- 3xy)+(x+y)- 2xy = 2 - 5xy = 2 - 5x(1-x)=5x- 5x + 2 = (x√5 - √5 /2)+3/4 >= 3/4 

Đạt GTNN là 3/4 khi x=y=1/2

2/ P = xy = x(6-x)=-x+6x = 9 - (x-3)2 <=9 

GTLN là 9 khi x=y=3

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

8 tháng 3 2017

ta biến đổi thành

x^3+y^3+xy=8-5xy

suy ra M_min thì 5xy_max 

ta có 5xy <= \(5\left(\frac{x+y}{2}\right)^2\)

dấu "=" khi x=y=1 

vật M_min=3