Thống kê điểm hỏi đáp trong tuần qua.

HD Film

Điểm hỏi đáp: 33

Ngày
Điểm

Tổng: 33 | Điểm tuần: | Trả lời 7 ngày qua: 1 | Lượt trả lời trong tháng: 9

Lượt trả lời trong 3 tháng: 85

Những câu trả lời của HD Film:

Vào lúc: 2019-11-17 10:44:01 Xem câu hỏi

\(Q=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

3ab(a+b) chia hết cho 6 vs mọi a,b nên muốn Q chia hết cho 6 <=> a+b chia hết cho 6

Vào lúc: 2019-11-08 21:30:16 Xem câu hỏi

\(\)\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

\(\Leftrightarrow a^2y\left(x+y\right)+b^2x\left(x+y\right)\ge\left(a+b\right)^2xy\)

\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy-\left(a+b\right)^2xy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)

Vậy BDT luôn đúng

Áp dụng tương tự với \(\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\)là có thể CM dc

BDT thức này gọi là Cauchy-Schwarz bạn nhé!

Vào lúc: 2019-11-06 21:51:23 Xem câu hỏi

\(\text{Σ}\frac{c}{2a+2b-c}=\text{Σ}\frac{c^2}{2ac+2bc-c^2}\)    (1)

Áp dụng BDT Cauchy-Schwarz, ta dc: 

\(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{4\left(ab+bc+ac\right)-a^2-b^2-c^2}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)+a^2+b^2+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu = xảy ra <=> a=b=c

Vào lúc: 2019-11-04 22:14:30 Xem câu hỏi

Bài này có mỗi cách đồng dư là nhanh nhất r bạn

Vào lúc: 2019-11-04 22:10:18 Xem câu hỏi

Ta có abcdef = ab.10000+cd.100+ef=ab.9999+cd.99+(ab+cd+ef) chắc chắn chia hết cho 99

Vào lúc: 2019-11-03 20:54:27 Xem câu hỏi

Bài này hình như sai đề, kết quả khi tình ra dc là 1999/2000 làm sao nhỏ hơn 3/4 dc bạn

Vào lúc: 2019-11-02 22:44:01 Xem câu hỏi

Ta có: \(m^2\equiv0,1,4\)(mod 5)

TH1: \(m^2\equiv1\left(mod.5\right)\)

\(m^2+4\equiv0\left(mod.5\right)\)

-> mà m khác 1 -> ko phải snt

TH2: \(m^2\equiv4\left(mod.5\right)\)

\(m^2+16\equiv0\left(mod.5\right)\)

-> chia hết cho 5-> không phải số nguyên tố

Vậy \(m^2\equiv0\left(mod.5\right)\)-> m chia hết cho  5

Vào lúc: 2019-11-02 22:21:31 Xem câu hỏi

\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

\(b^3+b^3+a^3\ge3b^2a\)

\(\Rightarrow3\left(a^3+b^3\right)\ge3\left(a^2b+b^2a\right)\Leftrightarrow\left(a^3+b^3\right)\ge\left(a^2b+b^2a\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

Vào lúc: 2019-11-01 21:15:18 Xem câu hỏi

Giả sử: \(9^n+63=x^2\)

+) Xét n=2k+1 (lẻ):

\(9^{2k+1}+63=9^{2k}.9+63\equiv\left(-1\right)^{2k}.9+3\equiv2\)(mod 5) -> vô lí vì scp không đòng dư với 2 mod 5 -> n=2k

+) Xét n=2k:

\(9^{2k}+63=x^2\Leftrightarrow x^2-9^{2k}=63\Leftrightarrow\left(x-9^k\right)\left(x+9^k\right)=63\)
Đến đây bạn lập bảng là ra nhé!

Vào lúc: 2019-10-30 21:58:53 Xem câu hỏi

Nếu p có dạng 5k+1 thì p+14 = 5k+15 chia hết cho 5 (loại)

Tương tự ta loại 5k+2,5k+3,5k+4 nên chỉ còn trường hợp 5k là snt thỏa mãn nên k = 1

Vào lúc: 2019-10-30 21:22:34 Xem câu hỏi

1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3

p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số

2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3

b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.

Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số

Vào lúc: 2019-10-28 22:00:01 Xem câu hỏi

tổng 3 số lẻ ko thể = 30 dc nhé

Vào lúc: 2019-10-28 21:22:17 Xem câu hỏi

\(\text{Σ}\frac{x^2}{x^4+yz}\le\text{Σ}\frac{x^2}{2x^2\sqrt{yz}}=\text{Σ}\frac{1}{2\sqrt{yz}}\le\text{Σ}\frac{\frac{1}{y}+\frac{1}{z}}{4}=\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}{2}=\frac{\frac{xy+yz+xz}{xyz}}{2}=\frac{\frac{3\left(xy+yz+xz\right)}{x^2+y^2+z^2}}{2}\)(1)

Dễ dàng CM được: \(x^2+y^2+z^2\ge xy+yz+xz\)

Thay vào (1) -> dpcm

Vào lúc: 2019-10-26 20:54:04 Xem câu hỏi

Đó là sigma, bạn có thể hiểu nếu đề bài viết a+b+c thì bạn nó tương đương với 

Σa , đương nhiên là làm tắt thôi
 

 

 

Vào lúc: 2019-10-26 16:09:27 Xem câu hỏi

\(\text{Σ}\sqrt{\frac{xy}{xy+z}}=\text{Σ}\sqrt{\frac{xy}{xy\left(x+y+z\right)}}=\text{Σ}\sqrt{\frac{xy}{\left(x+y\right)\left(x+z\right)}}\)

\(\le\text{Σ}\left(\frac{\frac{x}{x+y}+\frac{y}{x+z}}{2}\right)=\frac{3}{2}\)

Dấu = xảy ra khi x=y=z=1/3

Vào lúc: 2019-10-25 22:09:33 Xem câu hỏi

\(27x^3\sqrt{x}+27y^3\sqrt{y}+27z^3\sqrt{z}+\sqrt{x}+\sqrt{y}+\sqrt{z}\ge6\sqrt{3}\left(x^2+y^2+z^2\right)\)

Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)

Thay vào -> dpcm

Vào lúc: 2019-10-25 21:46:03 Xem câu hỏi

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=\frac{x^2}{\sqrt{x}}+\frac{y^2}{\sqrt{y}}+\frac{z^2}{\sqrt{z}}\)   (1)

Áp dụng BDT Cauchy-Schwarz: 

\(\left(1\right)\ge\frac{\left(x+y+z\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Ta lại có: \(x+y+z\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Thay vào ta có \(\left(1\right)\ge\frac{1}{\sqrt{3}}\)

Dấu = xảy ra khi x=y=z=1/3

Vào lúc: 2019-10-25 21:07:35 Xem câu hỏi

(n+3)*(n+1) là snt khi n+3 hoặc n+1 = 1

Khi do n+3 > n+1 -> n+1=1 -> n = 0

Thay vào ta dc 3 là snt

Vậy số phải tìm là 0

Vào lúc: 2019-10-25 21:06:17 Xem câu hỏi

\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{b^2}{b^2}}+2\sqrt{\frac{c^2}{c^2}}=6\)

Dấu = xảy ra khi a^4=b^4=c^4=1 <=> \(a=\pm1;b=\pm1;c\pm1\)

-> B = 3

Vào lúc: 2019-10-24 21:29:12 Xem câu hỏi

\(\sqrt{a^2+3a+5}\ge\frac{5a+13}{6}\Leftrightarrow a^2+3a+5\ge\frac{25a^2+130a+169}{36}\)

\(\Leftrightarrow36a^2+108a+180\ge25a^2+130a+169\Leftrightarrow11a^2-22a+11\ge0\)

\(\Leftrightarrow11\left(a-1\right)^2\ge0\forall a\inℝ\)

Dấu = xảy ra khi a=1

Trang trước Trang tiếp theo