Thống kê điểm hỏi đáp trong tuần qua.

Phạm Thị Thùy Linh

Điểm hỏi đáp: 3841

Ngày
Điểm

Tổng: 3841 | Điểm tuần: | Trả lời 7 ngày qua: 0 | Lượt trả lời trong tháng: 0

Lượt trả lời trong 3 tháng: 13

Những câu trả lời của Phạm Thị Thùy Linh:

Vào lúc: 2020-04-30 14:30:27 Xem câu hỏi

\(\hept{\begin{cases}2x+y=m^2+m\\\left(m^2+3\right)x+2y=4\end{cases}}\)

Để hpt vô nghiệm \(\Rightarrow\hept{\begin{cases}\frac{2}{m^2+3}=\frac{1}{2}\left(1\right)\\\frac{1}{2}\ne\frac{m^2+m}{4}\left(2\right)\end{cases}}\)

Giải ( 1 ) \(\Rightarrow m^2+3=4\Rightarrow m^2=1\Rightarrow m=\pm1\)( * ) 

GIải ( 2 ) \(\Rightarrow m^2+m\ne2\Rightarrow m^2+m-2\ne0\)

\(\Rightarrow\left(m+1\right)\left(m-2\right)\ne0\Rightarrow\hept{\begin{cases}m\ne-1\\m\ne2\end{cases}}\)( ** )

Từ ( * ) và ( ** ) \(\Rightarrow\)Để pt vô nghiệm thì m = 1 

Vào lúc: 2020-04-30 14:21:45 Xem câu hỏi

\(\hept{\begin{cases}x=\frac{m+1}{3}y-1\\-mx=y-1\end{cases}\Rightarrow\hept{\begin{cases}x-\frac{m+1}{3}y=-1\\mx+y=1\end{cases}}}\)

Để hpt có nghiệm => hpt có 1 nghiệm duy nhất hoặc có vô số nghiệm

* Để hpt có 1 nghiệm duy nhất 

\(\Rightarrow\frac{1}{m}\ne\frac{m+1}{1}\Rightarrow m\ne m+1\left(tm\right)\)

Vậy với mọi m phương trình luôn có 1 nghiệm duy nhất

* Để hpt có vô số nghiệm

\(\Rightarrow\frac{1}{m}=\frac{m\left(m+1\right)}{1}=-\frac{1}{1}\)

\(\frac{1}{m}=-1\Rightarrow m=-1\)\(\Rightarrow-\frac{1\left(-1+1\right)}{1}=-1\left(ktm\right)\)

Vậy không có giá trị nào để hpt vô số nghiệm

Vậy với mọi m pt luôn có nghiệm 

Vào lúc: 2020-03-16 11:35:24 Xem câu hỏi

\(\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5-2\sqrt{5}+1}\)

\(=\sqrt{\sqrt{5}^2-2\sqrt{5}+1^2}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=|\sqrt{5}-1|=\sqrt{5}-1\)

Vào lúc: 2020-03-15 12:51:12 Xem câu hỏi

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)\(\Rightarrow a+3b-5c=-2\)

\(\Rightarrow3b=-2+5c-a\)\(\Rightarrow3b+2a-4c=-2+5c-a+2a-4c\)

\(\Rightarrow P=-2+a+c\)

Lại có : \(2a+b+2c=6\Rightarrow2\left(a+c\right)\le6\)

\(\Rightarrow a+c\le3\)

\(\Rightarrow P\le-2+3=1\Rightarrow P\le1\)

Dấu " = " sảy ra \(\Leftrightarrow\hept{\begin{cases}b=0\\3a-3c=4\\2a+2c=6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}b=0\\3a-3c=4\\3a+3c=9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{13}{6}\\b=0\\c=\frac{5}{6}\end{cases}}\)

Chị chỉ tìm được Max thui 

Vào lúc: 2020-03-11 21:09:01 Xem câu hỏi

Dùng bảng xét dấu :

x 2 [4-2x] [x-2] Vế trái 2x-4 4-2x 2-x x-2 x-2 2-x

Nếu \(x< 2\)

\(\Rightarrow x-2=2-x\Rightarrow2x=4\Rightarrow x=2\left(ktm\right)\)

Nếu \(x\ge2\)

\(\Rightarrow2-x=2-x\Rightarrow0=0\)( luôn đúng )

\(\Rightarrow x\ge2\)

Vào lúc: 2020-03-11 20:23:29 Xem câu hỏi

\(a,\)\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(b,P=\frac{A}{B}=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+5}{\sqrt{x}-3}\)

\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\left(\sqrt{x}-3\right)}{\sqrt{x}+5}=\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}\)

Để \(\sqrt{P}< \frac{1}{3}\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}< \frac{1}{3}\)

\(\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}-\frac{1}{3}< 0\)

\(\Rightarrow\frac{3\left(2x+3\sqrt{x}-1\right)-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Rightarrow6x+9\sqrt{x}-3-\sqrt{x}-5< 0\)( do \(3\left(\sqrt{x}+5\right)>0\))

\(\Rightarrow6x-8\sqrt{x}-8< 0\Rightarrow3x-4\sqrt{x}-4< 0\)

\(\Rightarrow3x-6\sqrt{x}+2\sqrt{x}-4< 0\)

\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-2\right)+2\left(\sqrt{x}-2\right)< 0\)

\(\Rightarrow\left(\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)< 0\)

Vì \(3\sqrt{x}+2>0\Rightarrow\sqrt{x}-2< 0\)

\(\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

Vậy để \(\sqrt{P}< \frac{1}{3}\)thì \(0\le x< 4\)

Vào lúc: 2020-03-11 12:11:54 Xem câu hỏi

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\frac{m}{1}\ne\frac{1}{2}\Rightarrow2m\ne1\Rightarrow m\ne\frac{1}{2}\)

* Giải hệ theo m :

\(\hept{\begin{cases}mx+y=4\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}2mx+2y=8\\x+2y=5\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2mx+x=3\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x\left(2m+1\right)=3\\x+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\\frac{3}{2m+1}+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=5-\frac{3}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=\frac{10m-2}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\y=\frac{5m-1}{2m+1}\end{cases}}\)

Vì \(x>0\Rightarrow\frac{3}{2m+1}>0\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\left(1\right)\)

Vì \(y>0\Rightarrow\frac{5m-1}{2m+1}>0\)mà \(2m+1>0\Rightarrow5m-1>0\Rightarrow m>\frac{1}{5}\left(2\right)\)

Để \(y>x\Rightarrow\frac{5m-1}{2m+1}>\frac{3}{2m+1}\)\(\Rightarrow\frac{5m-1}{2m+1}-\frac{3}{2m+1}>0\)

\(\Rightarrow\frac{5m-1-3}{2m+1}>0\Rightarrow\frac{5m-4}{2m+1}>0\)

Mà \(2m+1>0\Rightarrow5m-4>0\Rightarrow m>\frac{4}{5}\)

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)Để hệ phương trình có nghiệm duy nhất thỏa mãn y > x > 0 thì \(m>\frac{4}{5}\)

Giải xong muốn gãy tay :v

Vào lúc: 2020-03-11 08:33:24 Xem câu hỏi

\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)

\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)

\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)

Vào lúc: 2020-03-10 15:14:54 Xem câu hỏi

\(\frac{3x-5}{x-4}=\frac{3x-12+7}{x-4}=\frac{3\left(x-4\right)}{x-4}+\frac{7}{x-4}\)

\(=3+\frac{7}{x-4}\)

Để \(\frac{3x-5}{x-4}\in Z\Rightarrow3+\frac{7}{x-4}\in Z\Rightarrow\frac{7}{x-4}\in Z\)

\(\Leftrightarrow7⋮x-4\Rightarrow x-4\inƯ_7\)

\(TH1:x-4=1\Rightarrow x-5\)

\(TH2:x-4=-1\Rightarrow x=3\)

\(TH3:x-4=7\Rightarrow x=12\)

\(TH4:x-4=-7\Rightarrow x=-3\)

Vậy để \(\frac{3x-5}{x-4}\in Z\)thì \(x\in\left\{5;3;12;-3\right\}\)

Vào lúc: 2020-03-10 14:58:13 Xem câu hỏi

\(a,\)\(đkxđ\)\(\hept{\begin{cases}3+2x\ne0\\3-2x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-\frac{3}{2}\\x\ne\frac{3}{2}\end{cases}}}\)

\(b,\)\(A=\left(\frac{1}{3+2x}+\frac{1}{3-2x}\right):\frac{1}{3+2x}\)

\(=\left(\frac{3-2x+3+2x}{\left(3-2x\right)\left(3+2x\right)}\right).\frac{3+2x}{1}\)

\(=\frac{6\left(3+2x\right)}{\left(3-2x\right)\left(3+2x\right)}=\frac{6}{3-2x}\)

\(c,\)Tại x = 3 \(\Rightarrow A=\frac{6}{3+2.3}=\frac{6}{9}=\frac{2}{3}\)

Vào lúc: 2020-03-10 14:52:07 Xem câu hỏi

Đề sai nha phải như này nà :b

\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\)\(\left(\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(\frac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(x-2\sqrt{x}+1\right)\)

\(=\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)^2\)

\(=\frac{1}{\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

Đẳng thức được cm :D

Vào lúc: 2020-03-10 12:39:02 Xem câu hỏi

\(\frac{1}{x-1}+\frac{1}{x-2}=\frac{1}{x+1}+\frac{1}{x+2}\)

\(=\frac{1}{x-1}+1+\frac{1}{x-2}+2-\frac{1}{x+1}-1-\frac{1}{x+2}-2=0\)

\(\Rightarrow\frac{x-1+1}{x-1}+\frac{x-2+2}{x-2}-\frac{x+1-1}{x+1}-\frac{x+2-2}{x+2}=0\)

\(\Rightarrow\frac{x}{x-1}+\frac{x}{x-2}-\frac{x}{x+1}-\frac{x}{x+2}=0\)

\(\Rightarrow x\left(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x+1}-\frac{1}{x+2}\right)=0\)

Vì \(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x+1}-\frac{1}{x+2}\ne0\)\(\Rightarrow x=0\)

Vào lúc: 2020-03-10 12:33:03 Xem câu hỏi

\(\sqrt{\left(\sqrt{2}-3\right)^2}-\sqrt{2\left(-3\right)^2}-4\sqrt{11-6\sqrt{2}}\)

\(=|\sqrt{2}-3|-3\sqrt{2}-4\sqrt{9-2.3.\sqrt{2}+2}\)

\(=3-\sqrt{2}-3\sqrt{2}-4\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3-\sqrt{2}-3\sqrt{2}-4\left(3-\sqrt{2}\right)\)

\(=3-\sqrt{2}-3\sqrt{2}-12+4\sqrt{2}\)

\(=-8\)

Vào lúc: 2020-01-01 14:38:57 Xem câu hỏi

Ta có :  \(\left(a^3-3ab^2\right)^2=a^6-6a^4b^2+9a^2b^4.\)

Lại có : \(\left(b^3-3a^2b\right)^2=b^6-6a^2b^4+9a^4b^2\)

\(\Rightarrow\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2=19^2+98^2\)

\(\Rightarrow a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=9965\)

\(\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=9965\)

\(\Rightarrow\left(a^2+b^2\right)^3=9965\)

\(\Rightarrow a^2+b^2=\sqrt[3]{9965}\)

Vào lúc: 2019-12-17 21:12:49 Xem câu hỏi

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)

\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)

Vào lúc: 2019-12-15 19:53:22 Xem câu hỏi

\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)

\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)

\(c,\)Tại x = 6, ta có :

\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)

Vậy tại x = 6 thì B = 3 

\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)

Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)

Th2: \(x+3=-1\Rightarrow x=-4\)

Th3 : \(x+3=3\Rightarrow x=0\)

TH4 \(x+3=-3\Rightarrow x=-6\)

Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)

Vào lúc: 2019-12-15 10:58:47 Xem câu hỏi

\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)

Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :

\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)

\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)

Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha ) 

Vào lúc: 2019-12-14 19:46:23 Xem câu hỏi

A B C D E I K H

Ta có \(\widehat{ACH}+\widehat{ECK}=90^o\)\(\left(\widehat{ACE}=90^o\right)\)

Mà \(\widehat{ECK}+\widehat{CEK}=90^o\)

\(\Rightarrow\widehat{ACH}=\widehat{CEK}\)

Xét \(\Delta AHC\)và \(\Delta CKE\)ta có :

\(\widehat{H}=\widehat{K}\left(=90^o\right)\)

\(AC=CE\left(gt\right)\)

\(\widehat{ACH}=\widehat{CEK}\left(cmt\right)\)

\(\Rightarrow\Delta AHC=\Delta CKE\left(ch-gn\right)\)

\(\Rightarrow AH=CK\)( hai cạnh tương ứng ) \(\left(1\right)\)

Chứng minh tương tự, ta cũng có : 

\(\Delta DIB=\Delta BHA\left(ch-gn\right)\)\(\Rightarrow IB=AH\)( hai cạnh tương ứng ) \(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow BI=CK\left(đpcm\right)\)

Chúc em gái chị học tốt nhé ^^ 

Vào lúc: 2019-12-13 18:34:11 Xem câu hỏi

Đề sai nhé bạn :

Chẳng hạn : \(0+1+2=3\)

Nhưng \(0^2+1^2+2^2=5>3\)nhé 

Vào lúc: 2019-12-12 19:09:09 Xem câu hỏi

\(\sqrt{7-4\sqrt{3}}+\frac{1}{2-\sqrt{3}}\)

\(=\sqrt{\sqrt{3}^2-2.2.\sqrt{3}+2^2}+\frac{2}{2\left(2-\sqrt{3}\right)}\)

\(=\sqrt{\left(\sqrt{3}-2\right)^2}-\frac{1}{\sqrt{3}-2}\)

\(=\sqrt{3}-2-\frac{1}{\sqrt{3}-2}=\frac{\left(\sqrt{3}-2\right)^2-1}{\sqrt{3}-2}\)

\(=\frac{7-4\sqrt{3}-1}{\sqrt{3}-2}=\frac{6-4\sqrt{3}}{\sqrt{3}-2}\)

Trang trước Trang tiếp theo