Giúp tôi giải toán


Trịnh Thành Công 30/12/2016 lúc 21:10

Xét tam giác BAH ta có:B+A+H=1800

                 Thay số:380+900+A=1800

                              BAH=520(1)

Vì BAH+HAC=900(2)

                           TỪ (1) và (2) suy ra:HAC=38

alibaba nguyễn 27/12/2016 lúc 10:45

A B C D

Ta có

\(AD^2+2CD^2+3BD^2=AB^2-BD^2+2\left(BC^2-BD^2\right)+3BD^2\)

\(=AB^2+2BC^2=AB^2+BC^2+CA^2\)

\(\Rightarrow\)ĐPCM

Dương Hải Yến 29/12/2016 lúc 20:53

Ta có:

AD2+2CD2+3BD2=AB2-BD2+2(BC2-BD2)+3BD2

=AB2+2BC2

=AB2+BC2+CA2

Suy ra ĐPCM

Nguyễn Duy Hoàng 27/12/2016 lúc 12:51

mình không biết mk mới học lớp 7

alibaba nguyễn 22/11/2016 lúc 14:14

Ta có:

\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)

\(\Leftrightarrow r^2=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)

\(\Leftrightarrow\frac{1}{r^2}=\frac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\frac{1}{\left(p-a\right)\left(p-b\right)}+\frac{1}{\left(p-b\right)\left(p-c\right)}+\frac{1}{\left(p-a\right)\left(p-c\right)}\)

\(\Leftrightarrow\frac{1}{r^2}=4\left(\frac{1}{\left(b+c-a\right)\left(a+c-b\right)}+\frac{1}{\left(a+c-b\right)\left(a+b-c\right)}+\frac{1}{\left(b+c-a\right)\left(a+b-c\right)}\right)\)

\(\Leftrightarrow\frac{1}{4r^2}=\frac{1}{c^2-\left(a-b\right)^2}+\frac{1}{a^2-\left(b-c\right)^2}+\frac{1}{b^2-\left(c-a\right)^2}\)

\(\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(áp dụng \(x^2-y^2\le x^2\)

\(\Rightarrow4r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le1\)

\(\Rightarrow\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\ge4\left(1\right)\)

Ta lại có

\(S=\frac{a.ha}{2}=pr=\frac{r\left(a+b+c\right)}{2}\)

\(\Rightarrow ha=\frac{r\left(a+b+c\right)}{a}\)

\(\Rightarrow ha^2=\frac{r^2\left(a+b+c\right)^2}{a^2}\)

Tương tự

\(hb^2=\frac{r^2\left(a+b+c\right)^2}{b^2}\)

\(hc^2=\frac{r^2\left(a+b+c\right)^2}{c^2}\)

Cộng vế theo vế ta được

\(ha^2+hb^2+hc^2=r^2\left(a+b+c\right)^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}=\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}\ge4\)

Bùi Thị Vân Quản lý 22/11/2016 lúc 14:27

Bài làm này thật xuất sắc !

alibaba nguyễn 22/11/2016 lúc 20:49

p = (a + b + c)/2

Còn r là bán kính đường tròn nội tiếp

alibaba nguyễn 20/11/2016 lúc 22:29

Cái này là bất đẳng thức Euler mà. Bạn tìm hiểu cái đó đi

alibaba nguyễn 10/11/2016 lúc 11:25

Dùng hình của cô Vân nhé

Gọi I là trung điểm của BC, kẽ AM, BN, IK, CL vuông góc với PQ và cắt PQ lần lược tại M,N,K,L

Ta có AM // CL

\(\Rightarrow\frac{QC}{QA}=\frac{CL}{AM}\left(1\right)\)

Ta có BN // AM

\(\Rightarrow\frac{PB}{PA}=\frac{BN}{AM}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{PB}{PA}.\frac{QC}{QA}=\frac{BN}{AM}.\frac{CL}{AM}=\frac{BN.CL}{AM^2}\left(3\right)\)

Ta có AM // IK

\(\Rightarrow\frac{GI}{GA}=\frac{IK}{AM}=\frac{1}{2}\left(4\right)\)

Ta có IG // BN // CL và BI = CI \(\Rightarrow IK\)là đường trung bình của hình thang BNLC

\(\Rightarrow IK=\frac{BN+CL}{2}\left(5\right)\)

Ta lại có \(BN.CL\le\frac{\left(BN+CL\right)^2}{4}=IK^2\left(6\right)\)

Từ (3), (4),(6) ta có

\(\Rightarrow\frac{PB}{PA}.\frac{QC}{QA}=\frac{BN.CL}{AM^2}\le\frac{IK^2}{AM^2}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

Dấu = xảy ra khi BN = CL hay PQ // BC

Bùi Thị Vân Quản lý 10/11/2016 lúc 10:50

A B C G P Q

alibaba nguyễn 10/11/2016 lúc 10:45

Muốn giúp bạn lắm mà không biết vẽ hình ai vẽ hộ cái hình thì t giải giúp cho

Hoàng Lê Bảo Ngọc CTV 24/10/2016 lúc 11:20

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta được : 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{2a}=\frac{2}{a}\)

Cộng các BĐT trên theo vế : \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

Nguyen ngoc dat 24/10/2016 lúc 14:14

Cho a,b.c là 3 cạnh 1 tam giác. CMR: 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a +1 / b +1 / c 

Áp dụng BĐT 1 / x +1 / y ≥ 4 / x+y  , ta được : 

1 / a+b−c + 1 / b+c−a ≥ 4 / 2b = 2 / b 

1 / b+c−a +1 / c+a−b ≥ 4 / 2c = 2 / c 

1 / a+b−c +1 / c+a−b ≥ 4 / 2a = 2 / a 

Cộng các BĐT trên theo vế : 2( 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ) ≥ 2( 1 / a + 1 / b + 1 / c )

⇒ 1 / a+b−c + 1 / b+c−a + 1 / c+a−b  ≥ 1 / a + 1 / b + 1 / c 

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

Hoàng Lê Bảo Ngọc CTV 07/10/2016 lúc 20:01

A B C D K H I O M

Gọi O là giao điểm của hai đường chéo AC và BD. Từ O kẻ OM song song với CI , suy ra OM cũng song song với KD và BH

Ta có \(\hept{\begin{cases}OA=OC\\OM\text{//}CI\end{cases}\Rightarrow}\)OM là đường trung bình tam giác ACI => \(CI=2OM\left(1\right)\)

Lại có \(\hept{\begin{cases}DK\text{//}OM\text{//}BH\\OD=OB\end{cases}\Rightarrow}\)OM là đường trung bình của hình thang BHKD

\(\Rightarrow KD+BH=2OM\left(2\right)\)

Từ (1) và (2) suy ra \(BH+CI+DK=4OM\le4OA\left(\text{hằng số}\right)\)

Vậy \(BH+CI+KD\) đạt giá trị lớn nhất bằng 4OA khi \(\hept{\begin{cases}OM=OA\\OM\perp d\end{cases}}\Rightarrow\)đường thẳng d vuông góc với CA tại A

uchiha itachi 09/10/2016 lúc 20:10

chịu thôi 

???????

Đỗ Quang Thịnh 09/10/2016 lúc 19:00

h di ma 

Hoàng Thị Thu Huyền Quản lý 04/10/2016 lúc 09:31

O C A B N M K M'

a.Gọi M' là giao điểm của CM với đường tròn. Do C thuộc AO nên ta thấy ngay cung MB \(\ge\) cung AM'.

Lại có \(\widehat{CMB}=\frac{sđ\left(BM'\right)}{2}=\frac{180^o-sđ\left(AM'\right)}{2}\)\(\widehat{MBC}=\frac{sđ\left(AM\right)}{2}=\frac{180^o-sđ\left(BM\right)}{2}\)

Vậy nê \(\widehat{CMB}\ge\widehat{MBC}\Rightarrow BC\ge CM.\)

b. Ta thấy tam giác CMN vuông tại C, K là trung điểm MN nên theo định lý về đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có: CK = NK = KM.

Lại có do K là trung điểm MN nên \(OK\perp MN.\)

Vậy thì \(CK^2+OK^2=NK^2+OK^2=ON^2=\left(\frac{AB}{2}\right)^2=\frac{AB^2}{4}\) không đổi (đpcm).

Phan Thanh Tịnh 03/10/2016 lúc 12:35

A = 4x2y2 - (x2 + y2 - z2)2 = (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2) = [z2 - (x - y)2].[(x + y)2 - z2] = (z - x + y)(z + x - y)(x + y + z)(x + y - z)

Vì x,y,z > 0 ; x + y > z ; z + y > x và z + x > y (vì x,y,z là độ dài 3 cạnh của 1 tam giác) nên các nhân tử của A đều dương => A > 0

Bạn ko hiểu chỗ nào thì hỏi mình nhé! Mình sửa (x2 + y2 - z2) thành (x2 + y2 - z2)2

Hoàng Lê Bảo Ngọc CTV 03/10/2016 lúc 17:59

Hóa ra đề bài ghi sai à? 

Hoàng Lê Bảo Ngọc CTV 28/09/2016 lúc 16:58

A B C O D E F

Ta có : \(\frac{OD}{AD}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{OE}{BE}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OF}{CF}=\frac{S_{ABO}}{S_{ABC}}\)

\(\Rightarrow\frac{OD}{AD}+\frac{OE}{BE}+\frac{OF}{CF}=\frac{S_{ABC}}{S_{ABC}}=1\)

\(\Rightarrow\left(1-\frac{OD}{AD}\right)+\left(1-\frac{OE}{BE}\right)+\left(1-\frac{OF}{CF}\right)=2\)

\(\Rightarrow\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=2\)

hay \(R\left(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}\right)=2\Rightarrow\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}=\frac{2}{R}\) 

mà ta có \(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}\ge\frac{9}{AD+BE+CF}\)

\(\Rightarrow\frac{2}{R}\ge\frac{9}{AD+BE+CF}\)

\(\Rightarrow AD+BE+CF\ge\frac{9R}{2}\)(đpcm)

Thái Viết Nam 28/09/2016 lúc 21:32

Khó quá! Em mới học lớp 7

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngTứ giácHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: