Giúp tôi giải toán


Trần Thùy Dung CTV 05/11/2016 lúc 13:17

Giả sử \(\sqrt{3}\)không phải số vô tỉ.

Đặt \(\sqrt{3}=\frac{m}{n}\)( m , n là các số nguyên khác 0 ;\(\frac{m}{n}\)tối giản, hay \(ƯCLN\left(m;n\right)=1\))

\(\Rightarrow\left(\sqrt{3}\right)^2=\left(\frac{m}{n}\right)^2\)

\(\Rightarrow\frac{m^2}{n^2}=3\)

\(\Rightarrow m^2=3n^2\)

\(\Rightarrow m^2\text{⋮}3\)

\(\Rightarrow m\text{⋮}3\)

Đặt \(m=3k\)

\(\Rightarrow\left(3k\right)^2=3n^2\)

\(\Rightarrow3n^2=9k^2\)

\(\Rightarrow n^2=3k^2\)

\(\Rightarrow n^2\text{⋮}3\)

\(\Rightarrow n\text{⋮}3\)

Mà \(m\text{⋮}3\) nên \(ƯCLN\left(m;n\right)\ne1\), trái với điều kiện.

Vậy \(\sqrt{3}\)là số vô tỉ.

Tương tự với \(\sqrt{5}.\)  

Trương Thị Khánh An 30/10/2016 lúc 21:23

iả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

thế nào?

Trương Thị Khánh An 30/10/2016 lúc 21:24

hai câu trên thì câu đàu bị lỗi, mong thông cảm!!!!!!!!!

    thanks nhìu!

Trương Thị Khánh An 30/10/2016 lúc 21:10

       Giả sử rằng {\displaystyle {\sqrt {2}}} là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a / b = {\displaystyle {\sqrt {2}}}.

       Như vậy {\displaystyle {\sqrt {2}}} có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọn được nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.

       Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.

       Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)

    Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).

Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.

  1. Thay (6) vào (3) ta có: (2k)2 = 2b2 {\displaystyle \Leftrightarrow } 4k2 = 2b2 {\displaystyle \Leftrightarrow } 2k2 = b2.
  2. Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn [lí luận tương tự như (5)].
  3. Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận {\displaystyle {\sqrt {2}}} là một số hữu tỉ là sai và phải kết luận {\displaystyle {\sqrt {2}}} là số vô tỉ.

#Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

Phạm Thị Mỹ Tình 25/10/2016 lúc 22:14

điều kiện còn ở dưới nửa nha bn đọc kĩ đề tồi ý kiến .OK =_=

Công chúa Phương Thìn 25/10/2016 lúc 19:51

Thiếu đề ak bạn, đề cho a thuộc Q, chưa cho điều kiện j mà sao hỏi b thuộc j

Phan Thanh Tịnh 09/10/2016 lúc 12:40

A =\(\frac{\sqrt{x}}{\sqrt{x}+2}=1-\frac{2}{\sqrt{x}+2}\).Để\(A\in Z\Rightarrow\frac{2}{\sqrt{x}+2}\in Z\)\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

Bạn ko hiểu thì hỏi nhé!

Thái Viết Nam 09/10/2016 lúc 09:35

\(1-\frac{1}{\sqrt{24}}\approx0,8\)

\(\frac{4}{5}=0,8\)

\(1-\frac{1}{\sqrt{24}}< \frac{4}{5}\)vì 0,8 làm tròn < 0,8

Sáng Nguyễn 29/07/2016 lúc 20:11

Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số \(\frac{a}{b}\)( \(a\)  và \(b\)là các số nguyên).Tập hợp số vô tỉ kí hiệu là \(II\)
Có thể dùng biểu diễn thập phân (hay sự biểu diễn của một số trong hệ thập phân) của một số để định nghĩa số hữu tỉ và số vô tỉ.
Nếu như mọi số hữu tỉ đều có biểu diễn thập phân hoặc hữu hạn (số thập phân hữu hạn, ví dụ: \(\frac{1}{2}=0,5\) )
 hoặc vô hạn tuần hoàn (số thập phân vô hạn tuần hoàn, ví dụ: \(\frac{1}{11}=0,09\) )
thì số vô tỉ có biểu diễn thập phân vô hạn nhưng không tuần hoàn (ví dụ: \(\pi=3,141592653589793\) )
Một số thực là số vô tỷ khi và chỉ khi biểu diễn liên phân số của nó là vô-hạn.

TFBOYS_VTK 29/07/2016 lúc 20:17

số vô tỉ là số thực ko phải là số hữu tỷ,kí hiêu:II

Cậu bít rồi hỏi làm j nữa z?

Nguyễn Kim Chi 29/07/2016 lúc 20:12

Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số {\displaystyle {\frac {a}{b}}} ({\displaystyle a} và {\displaystyle b} là các số nguyên).Tập hợp số vô tỉ kí hiệu là {\displaystyle \mathbb {I} }

{\displaystyle \mathbb {I} =\left\{x|x\neq {\frac {m}{n}}\forall m\in \mathbb {Z} ,\forall n\in \mathbb {Z^{*}} \right\}}

Ví dụ:

  1. Số thập phân vô hạn có chu kỳ thay đổi: 0,1010010001000010000010000001... (Số thập phân vô hạn không tuần hoàn)
  2. Số {\displaystyle {\sqrt {2}}} = 1,414213...
  3. Số {\displaystyle \pi =3,141592653589793...\,}
  4. Số lôgarít tự nhiên e = 2,718281...

Người ta đã chứng minh được rằng, tập hợp các số vô tỉ có lực lượng lớn hơn tập hợp các số hữu tỉ. Xem chứng minh ở bài tập hợp đếm được.

Nguyễn Thiên Kim 27/07/2016 lúc 21:20

Trước hết chứng minh \(\sqrt[3]{2}\) là một số vô tỉ.

Ta giả sử \(\sqrt[3]{2}\)hữu tỉ thì luôn tồn tại các số nguyên \(m,n\ne0\)sao cho \(\left(m,n\right)=1\)và \(\sqrt[3]{2}=\frac{m}{n}\)(1)

Suy ra \(\frac{m^3}{n^3}=2\)\(\Rightarrow\)\(m^3=2n^3\)\(\Rightarrow\)\(m^3\)chia hết cho \(n^3\)

Gọi \(k\)là 1 ước nguyên tố nào đó của \(n\)thế thì \(m^3\)chia hết cho \(k\)do đó \(m\)chia hết cho \(k\)

Như vậy \(k\)là ước nguyên tố của \(m\)và \(n\), trái với \(\left(m,n\right)=1.\)Vậy  \(\sqrt[3]{2}\) là một số vô tỉ.

Ta quay trở lại giải bài toán trên:

Giả sử tồn tại các số hữu tỉ p, q, r với \(r>0\)sao cho \(\sqrt[3]{2}=p+q\sqrt{r}.\)Khi đó \(p\)và \(q\)không đồng thời bằng 0.

Ta có \(2=\left(p+q\sqrt{r}\right)^3=p^3+3p^2q\sqrt{r}+3pq^2r+q^3r\sqrt{r}\)

\(\Rightarrow\)\(2-p^3-3pq^2r=3p^2q\sqrt{r}+q^3r\sqrt{r}=q\left(3p^2+q^2r\right)\sqrt{r}\)(*)

- Nếu \(q\left(3p^2+q^2r\right)=0\)thì \(q=0\)\(\Rightarrow\)\(p=\sqrt[3]{2},\)vô lý.

- Nếu \(q\left(3p^2+q^2r\right)\ne0\)thì (*) \(\Leftrightarrow\)\(\sqrt{r}=\frac{2-p^3-3pq^2r}{q\left(3p^2+q^2r\right)}\)

Do đó \(\sqrt[3]{2}=p+q\sqrt{r}\)là một số hữu tỉ (mâu thuẫn).

Vậy ta có đpcm.

Kẻ_Mạo_Danh 28/07/2016 lúc 08:39

(sqrt)

Phước Nguyễn 27/07/2016 lúc 12:56

Do  \(n\in N^{\text{*}}\)  \(\left(o\right)\) nên ta dễ dàng suy ra  \(2+2\sqrt{28n^2+1}\in Z^+\)

Do đó,  \(2\sqrt{28n^2+1}\in Z^+\)  dẫn đến  \(\sqrt{28n^2+1}\in Q\)  

Lại có:  \(28n^2+1\)  luôn là một số nguyên dương (do  \(\left(o\right)\))   nên   \(\sqrt{28n^2+1}\in Z^+\)

hay nói cách khác, ta đặt  \(\sqrt{28n^2+1}=m\)  (với  \(m\in Z^+\)  )

\(\Rightarrow\)  \(28n^2+1=m^2\)   \(\left(\alpha\right)\)

\(\Rightarrow\)    \(m^2-1=28n^2\)  chia hết cho  \(4\)

Suy ra  \(m^2\text{ ≡ }1\)    \(\left(\text{mod 4}\right)\)  

Hay \(m\) phải là một số lẻ có dạng \(m=2k+1\)  \(\left(k\in Z^+\right)\)

Từ  \(\left(\alpha\right)\)  suy ra  \(28n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)

nên  \(7n^2=k\left(k+1\right)\)

Theo đó,  ta có:  \(\orbr{\begin{cases}k\\k+1\end{cases}\text{chia hết cho 7}}\)  

Xét hai trường hợp sau:

\(\text{Trường hợp 1}:\)\(k=7q\) \(\left(q\in Z^+\right)\)

Suy ra   \(7n^2=7q\left(7q+1\right)\)

\(\Rightarrow\)  \(n^2=q\left(7q+1\right)\)  \(\left(\beta\right)\)

Mặt khác, vì  \(\left(q,7q+1\right)=1\)  nên  từ  \(\left(\beta\right)\)  suy ra  \(\hept{\begin{cases}q=a^2\\7q+1=b^2\end{cases}\Rightarrow}\)  \(7a^2+1=b^2\)  \(\left(\gamma\right)\)

Tóm tại tất cả điều trên, ta có:

\(A=2+2\sqrt{28n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.7q=4+28q\)

Khi đó,  \(A=4+28a^2=4\left(7a^2+1\right)=4b^2\)  (do  \(\left(\gamma\right)\)  )

Vậy,  \(A\)  là số chính phương với tất cả các điều kiện nêu trên

\(\text{Trường hợp 2:}\)\(k+1=7q\)

Tương tự

White Boy 27/07/2016 lúc 15:48

th2 có thỏa mãn k bn?

White Boy 27/07/2016 lúc 15:12

cảm ơn bn

Thị Hương Đoàn 26/07/2016 lúc 22:21

Đặt  3√2=x23=x.  xx là số vô tỉ

       c=x+x2c=x+x2 

Giả sử  cc  là số hữu tỉ thì  x2+x+1x2+x+1  là số hữu tỉ

Do  x>1x>1,  x−1x−1  là số vô tỉ nên 

     (x−1)(x2+x+1)(x−1)(x2+x+1)  là số vô tỉ   ↔x3−1↔x3−1   là số vô tỉ   ↔1↔1   là số vô tỉ  (vô lí)

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngTứ giácHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.

Lượng giác
sin cos tan cot sinh cosh tanh
Lim-log
Log Ln Lim
Phép toán
+ - ÷ × =
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: